12.5 Swaps
Don't know: \(r \). What is fair value of \(r \)?

Due to not knowing \(c_0, c_1, c_2, c_3 \):

\(c_1 \) = actual interest rate at \(t = 1 \),
for funds lent at \(t = 1 \), for period of 1 yr.

Do know: discount factors \(d_0, d_1, d_2, d_3 \)

from T-bill auctions.

From \(d_0, d_1, d_2, d_3 \), can estimate "short rates" \(r_0, r_1, r_2, r_3 \)

the interest rates for funds lent at

\(r_0 \): time 0, for 1 yr
\(r_1 \): time 1, for 1 yr
\(r_2 \): time 2, for 1 yr.
Given d_{01}, find n_0

\[(100d_{01})(1 + n_0) = 100 \Rightarrow 1 + n_0 = \frac{1}{d_{01}} \text{ and } n_0 = \frac{1}{d_{01}} - 1\]

If $d_{01} = 0.9$, then $n_0 = \frac{1}{0.9} - 1 = \frac{10}{9} - 1 = \frac{1}{9}$.

Given d_{01}, d_{02}

find n_1

\[(100d_{12})(1 + n_1) = 100 \Rightarrow d_{12} = \frac{1}{1 + n_1}, \quad n_1 = \frac{1}{d_{12}} - 1\]

Suppose $d_{01} = 0.9$, $d_{02} = 0.72$. Then $d_{01}d_{12} = d_{02}$, so $d_{12} = \frac{d_{02}}{d_{01}} = \frac{0.72}{0.9} = 0.8$

\[\frac{1}{d_{12}} = \frac{1}{0.8} = \frac{5}{4} \text{ and } n_1 = \frac{5}{4} - 1 = \frac{1}{4}\]
B pays A

\[\text{estimated } \begin{array}{cccc}
\tau_0 N & \tau_1 N & \tau_2 N & \tau_3 N \\
\text{(actual } \tau_0 N) & \text{(actual } \tau_1 N) & \text{(actual } \tau_2 N) & \text{(actual } \tau_3 N) \\
\end{array} \]

P.V. of (estimated stream) = \(\tau_0 N d_{01} + \tau_1 N d_{02} + \tau_2 N d_{03} + \tau_3 N d_{04} \) = \(N (\tau_0 d_{01} + \tau_1 d_{02} + \tau_2 d_{03} + \tau_3 d_{04}) \)

= \(N \sum_{i=0}^{3} \tau_i d_{0,i+1} \leftarrow = N (1 - d_{04}) \)

where: \(d_{01} = \frac{1}{1 + \tau_0} \), \(d_{02} = \frac{1}{(1 + \tau_0)(1 + \tau_1)} = d_{11} d_{12} \)

\(d_{03} = \frac{1}{(1 + \tau_0)(1 + \tau_1)(1 + \tau_2)} = d_{11} d_{12} d_{13} \)

\(d_{04} = \frac{1}{(1 + \tau_0)(1 + \tau_1)(1 + \tau_2)(1 + \tau_3)} \)

\[\text{Lemma: if } d_{0,i+1} = \frac{1}{(1 + \tau_0)(1 + \tau_1) \cdots (1 + \tau_i)} \quad \text{then } \sum_{i=0}^{M-1} \tau_i d_{0,i+1} = 1 - d_{0M} \quad \text{for } M = 1, 2, \ldots \]
Recall: A pays B \(r \cdot N\left(\sum_{i=1}^{4} d_{0i} \right) \).

Choose \(r \) such that

\[
r \cdot N\left(\sum_{i=1}^{4} d_{0i} \right) = N\left(1 - d_{04} \right).
\]