R3. a) Apply Ito’s lemma to show that \(y = \sigma B_t + (r - \sigma^2/2)t \) satisfies the stochastic differential equation (S.D.E.)

\[
dy = (r - \sigma^2/2)dt + \sigma dB_t.
\]

b) Apply Ito’s lemma to show that \(S = S_0 e^{\sigma B_t + (r - \sigma^2/2)t} \) satisfies the S.D.E.

\[
dS = rS dt + \sigma S dB_t
\]

c) (538 only) A Wiki article gives the following form of Ito’s lemma: If \(dx = a dt + b dB_t \) and \(y = g(t, x) \), then

\[
dy = \left(a \frac{\partial g}{\partial x} + \frac{\partial g}{\partial t} + \frac{1}{2} b^2 \frac{\partial^2 g}{\partial x^2} \right) dt + b \frac{\partial g}{\partial x} dB_t.
\]

The version of Ito’s lemma which appears in the textbook is:
If \(y = f(t, x) \), then

\[
dy = \frac{\partial f}{\partial t}(t, x) dt + \frac{\partial f}{\partial x}(t, x) dx + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(t, x) dx \ dx
\]

where the \(dx \ dx \) term is interpreted by using the identities \(dt \ dt = 0, dt \ dB_t = 0, dB_t \ dt = 0 \) and \(dB_t \ dB_t = dt \).
Show that the version in the Wiki article follows from the version in the textbook. Assume \(a \) and \(b \) are constants.
(a) \[y = \sigma B_t + (r - \frac{\sigma^2}{2}) t \] satisfies \[dy = (r - \frac{\sigma^2}{2}) dt + \sigma dB_t \]

\[y = f(t, x) = \sigma x + (r - \frac{\sigma^2}{2}) t \] where \[x = B_t \]

Itô: \[dy = ft \, dt + fx \, dx + \frac{1}{2} f_{xx} \, dx \, dx \]

\[ft = r - \frac{\sigma^2}{2}, \quad fx = \sigma, \quad f_{xx} = 0 \]

\[dy = (r - \frac{\sigma^2}{2}) dt + \sigma dx + 0 = (r - \frac{\sigma^2}{2}) dt + \sigma dB_t \] since \[x = B_t \]

\[\text{So it's the soln.} \]

(b) \[S = S_0 e^{\sigma B_t + (r - \frac{\sigma^2}{2}) t} \Rightarrow ds = rS dt + \sigma S dB_t \]

\[S = f(t, x) = S_0 e^{x}, \text{ where } x = \sigma B_t + (r - \frac{\sigma^2}{2}) t. \]

\[ds = S_0 e^{x} dx + \frac{1}{2} S_0 e^{x} dx \, dx \]

since \[dx = (r - \frac{1}{2} \sigma^2) dt + \sigma dB_t \]

\[dx \, dx = \sigma^2 dt \]

\[ds = S_0 e^{x} (r - \frac{1}{2} \sigma^2) dt + S_0 e^{x} \sigma dB_t + \frac{1}{2} S_0 \sigma^2 e^{x} dt \]

\[= S_0 e^{x} r dt + S_0 e^{x} \sigma dB_t \]

\[= r S dt + \sigma S dB_t \]
(C) In textbook:

\[dy = \frac{\partial f}{\partial t}(t,x) dt + \frac{\partial f}{\partial x}(t,x) dx + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(t,x) dt \, dx \, dx \]

\[dx = a \, dt + b \, dB_t \]

So

\[dy = \frac{\partial f}{\partial t}(t,x) dt + \frac{\partial f}{\partial x}(t,x) (a \, dt + b \, dB_t) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(t,x) (a \, dt + b \, dB_t)^2 \]

\[= \frac{\partial f}{\partial t}(t,x) dt + a \frac{\partial f}{\partial x}(t,x) dt + b \frac{\partial f}{\partial x}(t,x) dB_t + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(t,x) (a \, dt + 2ab \, dt \, dB_t + b^2 \, dB_t \, dB_t) \]

Because \(dt \, dt = 0, \; dt \, dB_t = 0, \; dB_t \, dB_t = dt \)

So we have

\[dy = (a \frac{\partial f}{\partial x} + \frac{\partial f}{\partial t}) dt + b \frac{\partial f}{\partial x} dB_t + \frac{b^2}{2} \frac{\partial^2 f}{\partial x^2} dt \]

\[= (a \frac{\partial f}{\partial x} + \frac{\partial f}{\partial t} + \frac{b^2}{2} \frac{\partial^2 f}{\partial x^2}) dt + b \frac{\partial f}{\partial x} dB_t \]

for \(y = f(t,x) \).

So for \(y = g(t,x) \), we have:

\[dy = (a \frac{\partial g}{\partial x} + \frac{\partial g}{\partial t} + \frac{b^2}{2} \frac{\partial^2 g}{\partial x^2}) dt + b \frac{\partial g}{\partial x} dB_t \]

Which is the form from wiki.