2. We are given the values \(f_j = f(t_j) = f\left(\frac{j}{n}\right) \) \(j = 0,..,n-1 \) of a function \(f(t) \) which we know has the form

\[
f(t) = \frac{a_0}{\sqrt{n}} + \frac{2}{\sqrt{n}} \sum_{k=1}^{n/2-1} (a_k \cos(2\pi kt) - b_k \sin(2\pi kt)) + \frac{a_{n/2}}{\sqrt{n}} \cos(n\pi t)
\]

We are designing a computer program to solve a differential equation involving \(f \). We will use a function \(\text{dft}(x) \) that, given a real vector \(x = (x_0, x_1, .., x_{n-1})^T \), returns a complex vector \(y = (y_0, y_1, .., y_{n-1})^T \) such that

\[
y_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \omega^{jk}, \quad j = 0,..,n-1
\]

where \(\omega = e^{-i2\pi/n} \). The first goal is to use the function \(\text{dft}(x) \) to compute the coefficients \(a_k \) and \(b_k \) for \(f \). How would you store the values \(f_j \) in the array \(x \)? Give formulas for the coefficients \(a_k \) and \(b_k \) in terms of the components of the complex vector \(y = \text{dft}(x) \).

b) We wish to solve the differential equation

\[
X''(t) = f(t)
\]

where \(f \) is as above, to determine a function \(X(t) \) such that \(X(t+1) = X(t) \) for all \(t \) (\(X \) is 1-periodic.) Calculus tells us that \(X(t) \) must be of the form

\[
X(t) = C_0 + C_1 t + C_2 t^2 + \frac{2}{\sqrt{n}} \sum_{k=1}^{n/2-1} [A_k \cos(2k\pi t) - B_k \sin(2k\pi t)] + \frac{A_{n/2}}{\sqrt{n}} \cos(n\pi t)
\]

Assume that \(a_0 = 0 \). Find values of the coefficients \(A_k, B_k, C_k \) such that \(X(t) \) satisfies the differential equation and is 1-periodic. Is the solution unique?

c) We will use a function \(\text{idft}(Y) \) that, given a complex vector \(Y = (Y_0, Y_1, .., Y_{n-1})^T \) with components such that \(Y_{n-k} = \overline{Y_k}, \quad k = 0,..,n-1 \), returns the inverse discrete fourier transform \(X \), the real vector with components

\[
X_j = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} Y_k \omega^{-jk}, \quad j = 0,..,n-1,
\]

The goal is to use \(\text{idft}(Y) \) to compute the solution \(X(t) \) at the points \(t_j = \frac{j}{n}, \quad j = 0,..,n-1 \). What data would you store in the array \(Y \)? Give formulas for the values \(X(t_j) \) in terms of the elements of the vector \(X \).

d)(538 only) Show that if the condition \(a_0 = 0 \) in b) is not satisfied, then there is no 1-periodic solution \(X(t) \).
2. (a) Note that given \(y_k = \frac{1}{n} \sum_{j=0}^{n-1} x_j w^{jk} \), \(k = 0, \ldots, n-1 \) \(w = e^{-i\frac{2\pi}{n}} \),

Then \(y_j \) is the Fourier transforms of \(x_j \).

Because we have to determine \(\theta(\frac{n}{2} + \frac{1}{2}) \) to \(a \)'s and \(b \)'s.

Then I will put first \(\theta (\frac{n}{2} + \frac{1}{2}) f_j \) into \(x \) and do dft(\(x \)).

Then for \(A_k = \frac{Y_k + Y_{-k}}{2} \), \(B_k = \frac{Y_k - Y_{-k}}{2i} \), \(k = 0, \ldots, \frac{n}{2} \).

(b) \(x(t) = c_0 + c_1 t + c_2 t^2 + \frac{2}{\sqrt{n}} \sum_{k=1}^{\frac{n}{2}-1} \left(A_k \cos k\pi t - B_k \sin k\pi t \right) + \frac{A_n}{\sqrt{n}} \cos \frac{n}{2} \pi t \)

\(\Rightarrow X'' = 2c_2 + \frac{2}{\sqrt{n}} \sum_{k=1}^{\frac{n}{2}-1} \left(-(2k\pi)^2 A_k \cos k\pi t + (2k\pi) B_k \sin k\pi t \right) - \frac{A_n}{\sqrt{n}} \cos \frac{n}{2} \pi t \)

\(\Rightarrow X'' = f(t+1) \)

\(\Rightarrow \begin{pmatrix} 2c_2 = \frac{A_n}{\sqrt{n}} \\ -(2k\pi)^2 A_k = A_k \\ -(2k\pi) B_k = B_k \\ -\frac{A_n}{\sqrt{n}} (\frac{n}{2})^2 = \frac{A_n}{\sqrt{n}} \end{pmatrix} \Rightarrow \begin{pmatrix} c_2 = 0 \\ A_k = \frac{a_k}{-(2k\pi)^2} \\ B_k = \frac{b_k}{-(2k\pi)} \\ A_n = \frac{a_n}{n\pi} \end{pmatrix} \)

\(X(t+1) = x(t) \Rightarrow c_0 \cos (\frac{n}{2} t + \frac{1}{2}) = c_0 \cos (\frac{n}{2} t) \Rightarrow C.C. \)

But the solution is not unique because \(A \)'s, \(B \)'s are unique. \(c_0 \) can be arbitrary.

(c) \(\Rightarrow \) IFT(\(Y \)) will return the inverse discrete Fourier Transform \(X \).

\(\Rightarrow \) Let \(Y = \text{IFT}(X) \), where \(X = (X_0, \ldots, X_{n-1}) = (f_0, \ldots, f_{n-1}) \).

And then \(X(t_j) = X_j \).
(d) if $u \neq 0 \implies c_2 \neq 0$

Note that
\[
\cos(2k\pi(t+1)) = \cos(2k\pi) = 1
\]
\[
\sin(2k\pi(t+1)) = \sin(2k\pi) = 0
\]
\[
\cos((n\pi(t+1)) = \cos(n\pi) \cos \pi t + \cos \pi
\]
\[
\frac{n}{2} - 1 \text{ is a number}
\]

\[
\implies n \text{ is even } \implies \cos(n\pi) = 1
\]

\[
\implies \cos((n\pi(t+1)) = \cos(n\pi) \cos \pi t + \cos \pi
\]

2) $x(t+1) = x(t) = c_2(t+1)^2 - c_3 t^2 - 2c_3 t + 1$

In general, $2c_3 t + 1$ for all t

\[
\implies x(t+1) \text{ is not 1-periodic}
\]