MATH 306C
Test 2
Mar. 31, 2017

NAME (please print legibly): ________________________________
Your University ID Number: ________________________________

• Please show all your work. You may use back pages if necessary. You may not receive full credit for a correct answer if there is no work shown.

• Please put your simplified final answers in the spaces provided.

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>VALUE</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
1. (10 points) a. 4pt Find the general solution of \(y'' - 4y' + 4y = 0 \).

\[
\begin{align*}
1 & \quad y'' - 4y' + 4y = 0 \\
2 & \quad r^2 - 4r + 4 = 0 \\
3 & \quad (r - 2)(r - 2) = 0 \\
4 & \quad r = 2 \quad \text{single, repeated root} \\
5 & \quad y = C_1e^{2t} + C_2te^{2t}
\end{align*}
\]

b. 4pt Solve the initial value problem \(y'' - 4y' + 4y = 0 \), \(y(0) = 1 \), \(y'(0) = 1 \).

\[
\begin{align*}
y &= C_1e^{2t} + C_2te^{2t} \\
1 &= C_1e^0 + C_2(0)e^0 \\
1 &= C_1 \\
y' &= 2C_1e^{2t} + C_2e^{2t} + 2C_2te^{2t} \\
1 &= 2(1)e^0 + C_2e^0 + 2C_2(0)e^0 \\
1 &= 2 + C_2 \\
-1 &= C_2 \\
1 &= C_1e^{2t} - C_2te^{2t}
\end{align*}
\]

\[
\begin{align*}
y &= e^{2t} - te^{2t}
\end{align*}
\]

c. 2pt Find \(\lim_{t \to \infty} y(t) \), where \(y(t) \) is the solution in b).

\[
\begin{align*}
y_1 &= e^{2t} \\
y_2 &= -te^{2t} \quad \text{outgrows } y_1 \\
\lim_{t \to \infty} -te^{2t} &= -\infty
\end{align*}
\]
2. (10 points) a. 4pt Find the form of a particular solution y_p with the fewest constants A, B, C, \ldots for $y'' - 4y' + 3y = (t^2 + 1)e^t$.

$$r^2 - 4r + 3 = 0$$

$$(r - 1)(r - 3) = 0$$

$r = 1 \quad r = 3$

$y_1 = C_1 e^t$$

$y_2 = C_2 e^{3t}$

$y_p = (At^2 + Bt + C)e^t$

however, Ce^t is a solution of the homogeneous equation, so must multiply by t.

$y_p = (At^3 + Bt^2 + Ct)e^t$

b. 6pt The differential equation $y'' + y = \sin(t)$ has a particular solution of the form $y_p = At \cos t + Bt \sin t$. Find y_p.

$$y_p = At \cos t + Bt \sin t$$

$$y_p' = Acos t - Asint + Bsint + Bcost$$

$$y_p'' = -Asint - Asint - Acos t + Bcost + Bcost - Btsint$$

$$-2Asint - Atcos t + 2Bcost - Btsint + Atcos t + Btsint = \sin t$$

$$-2Asint + 2Bcost = \sin t + \cos t$$

$$-2Asint = \sin t$$

$$2Bcost = \cos t$$

$-2A = 1$

$A = -\frac{1}{2}$

$2B = 0$

$B = 0$

$$y_p = -\frac{1}{2} t \cos t$$
3. (10 points) An object with mass \(m = 3 \) kg stretches a spring \(10/9 \) meters to its equilibrium position. Assume that the acceleration due to gravity is \(g = 10 \) meter/sec\(^2\). The spring constant \(k \) is then such that \(k \frac{10}{g} = mg \). No damping device is attached.

a. 2pt Write down a differential equation for \(y(t) \), the displacement of the object from its equilibrium position. \(y > 0 \) means the object is below equilibrium position and \(\frac{dy}{dt} > 0 \) means the object is moving downwards.

\[3y'' + 27y = 0 \]

b. 2pt At time \(t = 0 \) the object is released 1 meters below its equilibrium position with a downward velocity of 3 meters/sec. Write down the initial conditions.

\[y(0) = 1 \quad y'(0) = 3 \]

c. 3pt Find \(y(t) \), the solution of the above initial value problem.

\[3(r^2 + 9) \quad y(t) = C_1 \cos 3t + C_2 \sin 3t \]

\[r^2 = -9 \quad y(0) = C_1 = 1 \]

\[r = \pm 3i \quad y'(0) = 3C_1 \sin 0 + 3C_2 \cos 0 = 3 \]

\[C_2 = 3 \]

\[y(t) = \cos 3t + \sin 3t \]

d. 3pt Find an expression of the form \(y(t) = C \cos(\omega t - \alpha) \) for the solution.

\[y(t) = \sqrt{2} \cos \left(3t - \frac{\pi}{4} \right) \]
4. (10 points) A mass-spring-damper system is described by

\[mx''(t) + cx'(t) + kx(t) = 0 \]

where mass \(m = 1 \), spring constant \(k = \frac{5}{4} \) and damping coefficient \(c > 0 \).

a. For what values of \(c \) are the roots \(r \) of the characteristic equation imaginary?

\[r = \frac{-c \pm \sqrt{c^2 - 4\left(\frac{5}{4}\right)}}{2} \]

\(\sqrt{c^2 - 5} < 0 \) \quad when \quad \(0 < c < \sqrt{5} \)

b. For the value \(c = 1 \), find a general solution \(x(t) \) in terms of real functions.

\[r^2 + r + \frac{5}{4} = 0 \]

\[r = \frac{-1 \pm \sqrt{1 - 5}}{2} \]

\[y = c_1 e^{-\frac{1}{2}t} \cos t + c_2 e^{-\frac{1}{2}t} \sin t \]

c. For solutions \(x(t) \) for \(c = 1 \), find the pseudo-period \(T \). Note: The interval between times at which \(x(t) \) passes through 0, is \(T/2 \).

\[y = c e^{-\frac{1}{2}t} \cos(t - \alpha) \]

\[\frac{\pi}{2} = t_1 - \alpha \]

\[\frac{3\pi}{2} = t_2 - \alpha \]

\[\pi = t_1 - t_2 \]

\[\pi = t_2 - t_1 \]

\[T = \frac{T}{2} \]

\[T = 2\pi \]
5. **(10 points)** Match each differential equation with the best description of long time solution behavior. (Please place your answer I, II, III .. in the space provided below the equation.)

a. \(y'' + 4y = 0 \)

\[
\begin{align*}
 r^2 &= 4 \\
 r &= \pm 2 \\
 c_1 \cos 2t, c_2 \sin 2t
\end{align*}
\]

\[\boxed{\text{VI}}\]

- I. Every solution approaches 0 as \(t \to \infty \)

b. \(y'' - 8y' + 7y = 0 \)

\[
\begin{align*}
 r^2 - 8r + 7 &= 0 \\
 (r - 7)(r - 1) &= 0 \\
 r &= 7, 1 \\
 c_1 e^{7t}, c_2 e^t
\end{align*}
\]

\[\boxed{\text{III}}\]

- II. Has a nonzero solution that approaches 0 as \(t \to \infty \) and has a nonzero solution that approaches \(\infty \) as \(t \to \infty \).

- III. Every nonzero solution approaches either \(\infty \) or \(-\infty\) as \(t \to \infty \)

- IV. Every nonzero solution has oscillations which become progressively larger as \(t \to \infty \)

- V. Every nonzero solution has oscillations which become progressively smaller as \(t \to \infty \)

- VI. Every nonzero solution oscillates with constant amplitude as \(t \to \infty \)

d. \(y'' + 2y' + y = 0 \)

\[
\begin{align*}
 r^2 + 2r + 1 &= 0 \\
 (r + 1)^2 &= 0 \\
 r &= -1, -1 \\
 c_1 e^{-t}, c_2 e^{-t}
\end{align*}
\]

\[\boxed{\text{I}}\]

e. \(y'' - 6y' + 13y = 0 \)

\[
\begin{align*}
 r^2 - 6r + 13 &= 0 \\
 \left(r - 3 \pm \sqrt{36 - 52} \right) &= 0 \\
 r &= 3 \pm 2i \\
 c_1 e^{3t} \cos 2t + c_2 e^{3t} \sin 2t
\end{align*}
\]

\[\boxed{\text{IV}}\]