MATH 306C
Test 2
Oct. 23, 2015

NAME (please print legibly): **INSTRUCTOR SOLUTIONS**
Your University ID Number: ________________________________

- Please show all your work. You may use back pages if necessary. You may not receive full credit for a correct answer if there is no work shown.
- Please put your simplified final answers in the spaces provided.

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>VALUE</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
1. (10 points)
 a. 4pt Find the general solution of \(y'' - 2y' + y = 0 \).

 Try \(y = e^{rt} \).
 \((r^2 - 2r + 1)e^{rt} = 0\)

 \((r-1)(r-1) = 0\); \(r = 1 \) is a double root

 1.I. Solve \(y_1 = e^{rt}, \ y_2 = te^{rt} \)

 General solution \(y = c_1 e^{rt} + c_2 te^{rt} \)

 b. 4pt Solve the initial value problem \(y'' - 2y' + y = 0 \), \(y(0) = -1, y'(0) = 1 \).

 \[
 \begin{align*}
 \text{at } t = 0, \quad & y(0) = c_1 e^0 + c_2 \cdot 0 \cdot e^0 = -1 \quad \overset{1\text{pt}}{=} \quad (1) \\
 y'(t) &= c_1 e^t + c_2 (e^t + te^t) \\
 y'(0) &= c_1 e^0 + c_2 (e^0 + 0e^0) = 1 \quad \overset{1\text{pt}}{=} \quad (2)
 \end{align*}
 \]

 From (1), \(c_1 = -1 \).

 Then from (2), \(c_2 = 1 - c_1 = 1 - (-1) = 2 \)

 Solution \(y(t) = -e^t + 2te^t \)

 c. 2pt Find \(\lim_{t \to \infty} y(t) \), where \(y(t) \) is the solution in b).

 \(y(t) = -e^t + 2te^t \)

 For \(t \) large, \(-1 + 2t\) is large positive.

 Any explanation \(\overset{1\text{pt}}{=} \)

 Also, \(\lim_{t \to \infty} e^t = +\infty \) and \(\lim_{t \to \infty} (-1 + 2t) = +\infty \)

 \(\therefore \lim_{t \to \infty} y(t) = +\infty \)

 1pt
2. (10 points) a. 4pt Find the form of a particular solution y_p with the fewest constants A, B, C, .. for

$$y'' - 4y = (t^2 + t + 1)e^{2t}$$

First guess is $y_p = (At^2 + Bt + C)e^{2t}$.

However, solutions of homogeneous eqn are $y_1 = e^{2t}$, $y_2 = e^{-2t}$. The guess must not include solution of hom. eqn.

i. multiply by t: $y_p = (At^3 + Bt^2 + Ct)e^{2t}$

If $(At^2 + Bt + C)e^{2t}$, 1 pt

2 pt / 4

b. 6pt The differential equation $y'' + y = 2\cos(t)$ has a particular solution of the form $y_p = At\cos t + Bt\sin t$. Find y_p.

$$y = At\cos t + Bt\sin t$$

$$y' = A(t(-\sin t) + \cos t) + B(t(\cos t) + \sin t)$$

$$y'' = A(t(-\cos t) - \sin t - \sin t) + B(t(-\sin t + \cos t) + \cos t + \cos t)$$

$$y'' + y = A(2\sin t) + B(2\cos t) = 2\cos t + 0\cdot\sin t$$

Require $A = 0$, 1 pt

$B = 1$, 1 pt

Solution is $y_p = t\sin t$.
3. (10 points) An object with mass \(m = 9 \) kg stretches a spring 10/9 meters to its equilibrium position. Assume that the acceleration due to gravity is \(g = 10 \) meter/sec\(^2\). The spring constant \(k \) is then such that \(k \frac{10}{9} = mg \). No damping device is attached.

a. 2pt Write down a differential equation for \(y(t) \), the displacement of the object from its equilibrium position. \(y > 0 \) means the object is below equilibrium position and \(\frac{dy}{dt} > 0 \) means the object is moving downwards.

\[
\frac{d^2y}{dt^2} + 81y = 0 \quad \text{or} \quad \frac{d^2y}{dt^2} + 9y = 0
\]

b. 2pt At time \(t = 0 \) the object is released 1 meters above its equilibrium position with a downward velocity of 3 meters/sec. Write down the initial conditions.

\[
y(0) = -1 \quad \text{and} \quad y'(0) = 3
\]

c. 3pt Find \(y(t) \), the solution of the above initial value problem.

\[
\frac{d^2y}{dt^2} + 9y = 0 \quad \Rightarrow \quad z^2 + 9 = 0 \quad \Rightarrow \quad z = \pm \sqrt{-9} = \pm 3i
\]

\[
y = c_1 \cos 3t + c_2 \sin 3t
\]

\[
y(0) = 6 \quad \Rightarrow \quad c_1 \cdot 1 + c_2 \cdot 0 = -1 \quad \Rightarrow \quad c_1 = -1
\]

\[
y'(0) = -3c_1 \sin 3t + 3c_2 \cos 3t
\]

\[
y'(0) = -3(-1) \cdot 0 + 3c_2 \cdot 1 = 3 \quad \Rightarrow \quad c_2 = 1
\]

d. 3pt Find an expression of the form \(y(t) = C \cos(\omega t - \alpha) \) for the solution.

\[
y(t) = \sqrt{2} \cos (3t - \frac{3\pi}{4})
\]

\[
\text{ANSWER: } \quad \boxed{y(t) = \sqrt{2} \cos (3t - \frac{3\pi}{4})}
\]

1pt
4. (10 points) A mass-spring-damper system is described by

\[m\ddot{x}(t) + cx'(t) + kx(t) = 0 \]

where the mass \(m = 1 \), damping coefficient \(c = 2 \) and spring constant \(k > 0 \).

a. For what values of \(k \) are the roots \(r \) of the characteristic equation real?

char. eqn \(1 \cdot r^2 + 2 \cdot r + k = 0 \)

\[r = \frac{-2 \pm \sqrt{4 - 4k}}{2} = -1 \pm \sqrt{1 - k} \]

Roots \(r \) are real if \(1 - k \geq 0 \); \(k \leq 1 \)

b. For the value \(k = 5 \), find a general solution \(x(t) \) in terms of real functions.

\[r = -1 \pm \sqrt{1 - 5} = -1 \pm \sqrt{-4} = -1 \pm 2i \]

\[x(t) = A e^{-t} \cos 2t + B e^{-t} \sin 2t \]

c. For solutions \(x(t) \) for \(k = 5 \), find the pseudo-period \(T \). Note: The interval between times at which \(x(t) \) passes through 0, is \(T/2 \).

If convert to \(x(t) = C e^{-t} \cos(2t - \alpha) \),

\[\cos(\theta) = 0 \text{ for } \theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \ldots \]

\[2t - \alpha = \frac{\pi}{2} \]

\[2t_2 - \alpha = \frac{3\pi}{2} \]

\[2(t_2 - t_1) = \pi \text{; } t_2 - t_1 = \frac{\pi}{2} \]

\[T = t_2 - t_1 = \frac{\pi}{2} \Rightarrow T = \pi \]
5. (10 points) Match each differential equation with the best description of long time solution behavior. (Please place your answer I, II, III... in the space provided below the equation.)

a. \(y'' + y' + \frac{1}{4} y = 0 \)
\[
\begin{align*}
\lambda^2 + \lambda + \frac{1}{4} &= 0 \\
(\lambda + \frac{1}{2})^2 &= 0 \\
\lambda &= -\frac{1}{2}, \quad e^{-\frac{1}{2}t}, \quad te^{-\frac{1}{2}t} \\
&\text{I}
\end{align*}
\]

b. \(y'' - 2y' + 5y = 0 \)
\[
\begin{align*}
\lambda^2 - 2\lambda + 5 &= 0 \\
\lambda &= \left(2 \pm \sqrt{4 - 20}\right)/2 \\
\lambda &= 1 \pm 2i \\
e^t \cos 2t, e^t \sin 2t &\text{ IV}
\end{align*}
\]

c. \(y'' + 9y = 0 \)
\[
\begin{align*}
\lambda^2 + 9 &= 0 \\
\lambda &= \pm 3i \\
\cos 3t, \sin 3t &\text{ V I}
\end{align*}
\]

d. \(y'' - 5y' + 4y = 0 \)
\[
\begin{align*}
\lambda^2 - 5\lambda + 4 &= 0 \\
(\lambda - 1)(\lambda - 4) &= 0 \\
e^t, e^{4t} &\text{ III}
\end{align*}
\]

e. \(y'' + y' - 2y = 0 \)
\[
\begin{align*}
\lambda^2 + \lambda - 2 &= 0 \\
(\lambda - 2)(\lambda + 1) &= 0 \\
e^{-2t}, \quad e^t &\text{ II}
\end{align*}
\]

I. Every solution approaches 0 as \(t \to \infty \)

II. Has a nonzero solution that approaches 0 as \(t \to \infty \) and has a nonzero solution that approaches \(\infty \) as \(t \to \infty \).

III. Every nonzero solution approaches either \(\infty \) or \(-\infty \) as \(t \to \infty \).

IV. Every nonzero solution has oscillations which become progressively larger as \(t \to \infty \).

V. Every nonzero solution has oscillations which become progressively smaller as \(t \to \infty \).

VI. Every nonzero solution oscillates with constant amplitude as \(t \to \infty \).

For each of a) - e):
2 pts if correct,
0 pts if incorrect and no solutions given,
1 pt if incorrect but one solution correct.

ANSWER: __________________________