MATH 306C

Test 1
Sept. 25, 2015

NAME (please print legibly): ______________
Your University ID Number: ____________________

- Please show all your work. You may use back pages if necessary. You may not receive full credit for a correct answer if there is no work shown.
- Please put your simplified final answers in the spaces provided.

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>VALUE</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
1. (10 points)

a. (8pts) Find the general solution to the following ODE

\[\frac{dy}{dx} - \frac{2}{x} y = \frac{3}{x}, \quad x \geq 0 \]

2pts Standard form:

\[\frac{dy}{dx} - \frac{2}{x} y = \frac{3}{x} \]

4pts Integrating factor:

\[e^{\int \frac{-2}{x} dx} = e^{-2 \ln x} = e^{\ln x^{-2}} = x^{-2} \]

2pts Multiply by \(x^{-2} \) gives:

\[x^{-2} \frac{dy}{dx} - 2x^{-3} y = 3x^{-3} \]

1pt The left side is:

\[\frac{d}{dx} \left(x^{-2} y \right) = 3x^{-3} \]

2pts Integrating:

\[x^{-2} y = -\frac{3}{2} x^{-2} + C \]

2pts Multiply by \(x^2 \) gives:

\[y = -\frac{3}{2} + C x^2 \]

b. (2pts) Find the solution of the above equation which satisfies \(y(1) = 0 \).

1pt For \(x = 1 \),

\[y(1) = -\frac{3}{2} + C \cdot 1^2 = 0 \]

so \(C = \frac{3}{2} \)

and

\[y(x) = -\frac{3}{2} + \frac{3}{2} x^2 \]

1pt ANSWER:

\[y(x) = -\frac{3}{2} + \frac{3}{2} x^2 \]
2. (10 points)

a. (3pts) Verify that the following ODE is exact:

\[3x^2 + \sin y + (2y + x \cos y) \frac{dy}{dx} = 0 \]

(Show your work.)

\[\begin{align*}
\text{LHF} & \quad D_y M = 0 + \cos y \\
\text{RHF} & \quad D_x N = 0 + 1 \cdot \cos y \\
& \quad \text{Since } D_y M = D_x N, \ ODE \text{ is exact}
\end{align*} \]

b. (5pts) Find the general solution to the ODE in Part a. (You may leave your answer in implicit form.)

Want \(F(x, y) \) such that \(D_x F = M \) and \(D_y F = N \).

\[\begin{align*}
D_x F &= 3x^2 + \sin y \\
F &= x^3 + x \sin y + h(y) \\
\text{(integrate regarding } y \text{ as constant.)}
\end{align*} \]

\[\begin{align*}
D_y F &= 0 + x (\cos y) + h'(y) \\
& \quad \text{want } D_y F = 2y + x \cos y
\end{align*} \]

\[h'(y) = 2y \]

\[h(y) = y^2 + C \]

\[F = x^3 + x \sin y + y^2 + C \] or \[x^3 + x \sin y + y^2 = \text{constant} = C_1 \]

c. (2pts) Find the solution to the ODE in Part a. which satisfies \(y(0) = 1 \). (You may leave your answer in implicit form.)

\[\text{If } y(0) = 1, \text{ then } 0 + 1 \cdot \sin 1 + 1 = C_1 \]

\[C_1 = 1 \]

\[20 \quad x^3 + x \sin y + y^2 = 1 \] is solved in implicit form.
3. (10 points) A tank initially contains 10 liters of pure water. Salt solution with concentration 5 grams per liter flows into the tank, at 3 liters per minute. In the tank the solution is well mixed, and is drained from the tank at 3 liters per minute.

Let \(x = x(t) \) be the amount (in grams) of salt in the tank at time \(t \) minutes.

a. (2pt) What is the volume of solution in the tank, and what is the concentration in grams per liter, of the solution that leaves the tank?

\[
\text{Volume} = 10 \quad \text{and concentration} \quad \frac{x(t)}{10} \quad \text{grams/liter}
\]

b. (2pts) Find a formula that approximates \(\Delta x \), the change in the amount of salt over the time interval \([t, t + \Delta t]\), in terms of \(x \) and \(\Delta t \), the incremental change in time.

\[
\Delta x = 5 \frac{\text{gm}}{\text{min}} \cdot 3 \frac{\text{liters}}{\text{min}} \cdot \Delta t - \frac{x(t) \text{gm}}{10 \text{liters}} \cdot 3 \frac{\text{liters}}{\text{min}} \cdot \Delta t
\]

c. (2pts) Write a differential equation for the amount of salt in the tank.

\[
\frac{dx}{dt} = 15 - \frac{3}{10} x
\]

d. (3pts) Solve for \(x(t) \).

\[
\frac{dx}{dt} + \frac{3}{10} x = 15 \quad \rightarrow \quad e^{\frac{3}{10} t} \frac{dx}{dt} = 15 e^{\frac{3}{10} t} \quad \rightarrow \quad \frac{d}{dt} \left(e^{\frac{3}{10} t} x \right) = 15 e^{\frac{3}{10} t} \quad \rightarrow \quad e^{\frac{3}{10} t} x = 15 \left(e^{\frac{3}{10} \cdot t} \right) \bigg|_0^t \quad \rightarrow \quad x(t) = 50 \left(1 - e^{-\frac{3}{10} t} \right)
\]

e. (1pts) Calculate the limit \(\lim_{t \to \infty} x(t) \).

\[
\text{As } t \to \infty, \quad e^{-\frac{3}{10} t} \to 0 \quad \Rightarrow \quad x(t) \to 50
\]

\[1 \text{pt}\]
4. (10 points) Consider the differential equation

\[x'(t) = x^3 - x^2 \]

a. (3pts) Determine all the equilibrium solutions of this ODE.

\[x^2(x-1) = 0 \Rightarrow x = 0 \quad \text{or} \quad x = 1 \]

\[\text{let for factoring} \]

b. (5pts) Sketch a phase diagram for this ODE.

\[\begin{align*}
\text{If } x > 1, & \quad x' = x^2(x-1) > 0 & \Rightarrow & \quad 1 \quad \text{(let)} \\
\text{If } 0 < x < 1, & \quad x-1 < 0 \quad \text{and} \quad x' = x^2(x-1) < 0 & \Rightarrow & \quad 0 \quad \text{(let)} \\
\text{If } x < 0, & \quad x^2 > 0 \quad \text{and} \quad x-1 < 0, & \Rightarrow & \quad 0 \quad \text{(let)} \\
\end{align*} \]

\[\text{let for line with equilibria} \]

c. (2pts) For each equilibrium solution found in Part a, determine whether it is stable or unstable.

\[x = 1 \quad \text{is unstable} \]
\[x = 0 \quad \text{is unstable} \]
5. (10 points) Consider the DE $\frac{dy}{dx} = 3xy^{\frac{1}{3}}$

a. (3pts) Solve by separation of variables. Write C for the constant of integration.

\[
\begin{align*}
\int y^{-\frac{1}{3}} \, dy &= 3 \int x \, dx \\
\frac{2}{\sqrt[3]{3}} y^{\frac{2}{3}} + C_1 &\Rightarrow y^{\frac{2}{3}} = \frac{2}{\sqrt[3]{3}} x^2 + C_1 \\
\text{where } C = \frac{2}{\sqrt[3]{3}} C_1
\end{align*}
\]

\[
\begin{align*}
y &= \left(\frac{2}{\sqrt[3]{3}} x^2 + C_1 \right)^{\frac{3}{2}} \\
p\text{et}
\end{align*}
\]

b. (2pts) Find C such that the solution from Part a) passes through $(x, y) = (1, 0)$ and write out the solution $y(x)$.

\[
\begin{align*}
y(1) = 0 &\Rightarrow 0^{\frac{2}{3}} = \frac{2}{\sqrt[3]{3}} 1^2 + C_1 \\
&\Rightarrow C_1 = -\frac{2}{\sqrt[3]{3}} \\
y &= \left(\frac{2}{\sqrt[3]{3}} x^2 - 1 \right)^{\frac{3}{2}} \\
p\text{et}
\end{align*}
\]

c. (3pts) Write the DE in the form, $\frac{dy}{dx} = F(x, y)$ and calculate $\frac{\partial F}{\partial y}$. For what points (a, b) is it guaranteed that there exists a unique solution that passes through the point $(x, y) = (a, b)$?

\[
\begin{align*}
\frac{dy}{dx} &= F(x, y) = 3xy^{\frac{1}{3}} \\
\frac{\partial F}{\partial y} &= 3x \cdot \frac{1}{3} y^{-\frac{2}{3}} = \frac{x}{y^{\frac{2}{3}}}
\end{align*}
\]

\[
\text{Any } (a, b) \text{ such that } x^{\frac{2}{3}} \text{ is defined and not zero} \Rightarrow a \neq 0
\]

p\text{et}

d. (2pts) Find another solution of the same initial value problem $\frac{dy}{dx} = 3xy^{\frac{1}{3}}$, $y(1) = 0$.

\[
\begin{align*}
\text{Guess: } y(x) &= 0 \\
p\text{et}
\end{align*}
\]

\[
\begin{align*}
\text{Check: } \frac{dy}{dx} &= 3x(0)^{\frac{1}{3}} = 0 \\
y(1) &= 0
\end{align*}
\]